История рекламы
Создание рекламы
Основные виды рекламы
Принципы и практика рекламы
Как работает реклама
Эффективность рекламоносителей
Исследование рынка
Расходы на рекламу
Социокультурные измерения рекламы
Маркетинг
Маркетинг:основы теории и практики
Маркетинг и рост фирм
Управление малым бизнесом
Международная экономика
Производственный учёт



Предыдущая     |         Содержание     |    следующая

Основы маркетинга: теория и практика

Обеспечение выполнения планов маркетинга на предприятиях

Методы упорядочения плановых действий во времени

Среди процедур, обеспечивающих выполнение маркетинговых планов, наиболее важными являются:

1) упорядочение плановых действий во времени;

2) составление бюджетов маркетинга;

3) контроль выполнения планов маркетинга.

Планирование маркетинга (как, впрочем, планирование любой деятельности) представляет собой строгую цепь логически взаимосвязанных и последовательных процедур, которые иногда могут носить итерационный характер. Логика планирования представлена на рис. 13.1. Поскольку изображенная на нем схема носит укрупненный характер и посвящена в основном составлению планов, то есть смысл еще раз вернуться к ней и более подробно познакомиться не только с их составлением, но и с исполнением.

Этап 1. Предплановый анализ (анализ факторов внешней среды, SWOT-анализ, сбор и анализ вторичной информации, качественный анализ выявленных проблем и др.).

Этап 2. Формулирование (корректировка, уточнение) миссии фирмы (определение ее назначения, морально-нравственных целей, отношения к потребителям, к обществу и т.п.).

Этап 3. Определение конкретных целей, их оценка по критериям SMART (чего хочет достичь ваша фирма, ваш отдел или лично вы).

Этап 4. Генерация стратегий (наметка путей) достижения целей, их оценка и выбор наиболее приемлемых (как, каким образом предполагается достичь намеченных целей).

Этап 5. Формулирование конкретных действий (что следует сделать при движении по намеченному стратегическому пути для достижения целей).

Этап 6. Координация действий во времени, т.е. определение очередности их выполнения, времени начала и окончания, а также возможных резервов (в какой последовательности нужно выполнять действия).

Этап 7. Определение необходимых ресурсов по каждому действию и в целом по плану, т.е. составление бюджетов маркетинга (какие ресурсы и в каких объемах потребуются для реализации плана).

Этап 8. Проверка и уточнение плана (можно ли выполнить намеченный план). Если выполнение плана невозможно, то следует вернуться к этапам 3, 2 или даже 1. В этом и заключается итер-рационность процедуры планирования.

Этап 9. Подготовка графика (кто, что, когда должен делать).

Этап 10. Мониторинг и контроль (в какой степени достигнуты цели, выполняется ли план). При несоответствии результатов контроля и плановых действий возможна корректировка плана, что также свидетельствует об итеррационности процесса планирования.

Первый этап — предплановый анализ — подробно описан в разделе П. Последующие четыре этапа (второй — пятый) — в параграфе 13.2. Следующий шестой этап является чрезвычайно важным и заслуживает отдельного рассмотрения.

После того как определены все действия, которые необходимо выполнить, чтобы, реализуя выбранные стратегии, достичь намеченных целей, следует скоординировать (упорядочить) их во времени. Если действий немного (не более 10—15), то необходимость в решении такой задачи не возникает, поскольку эти действия как бы сами собой выстраиваются в строгой временной последовательности. Но если плановых действий много и среди них есть такие, которые могут выполняться параллельно с другими, без специального решения этой задачи не обойтись.

Линейные графики в упорядочении плановых действий

Наиболее простым методом упорядочения, который можно применять при относительно небольшом количестве действий (от 10 до 40—50) является метод линейных графиков. Применительно к ранее приводимому примеру плана конкретных действий ФПК АГУ по стратегии освоения нового товара (по выведению на рынок образовательных услуг обучающей программы Управление в учреждениях государственной статистики) линейный график выглядит так, как показано на рис. 14.1.

Как следует из рис . 14.1, некоторые виды действий можно делать параллельно. Так, подготовку учебно-методических материалов можно начать в первую неделю выполнения работ. Но некоторые виды действий, например первые четыре, необходимо начинить по порядку. На графике можно также зафиксировать продолжительность выполнения каждого действия, даты их начала и окончания (ранние и поздние) и получающиеся в связи с этим резервы времени для каждого действия.

Сетевые модели в упорядочении плановых действий

Для решения очень сложных плановых задач в части упоря дочения намечаемых мероприятий во времени применяются методы сетевого планирования и управления (СПУ). Эти методы осно ваны на моделировании процессов с помощью сетевых графиков и многообразных формализованных расчетов.

Сетевые модели позволяют формировать календарные планы выполнения комплексов работ, выявлять и мобилизовать резервы времени, добиваясь наиболее эффективного использования этого ограниченного ресурса. Без них очень трудно обойтись, если в план входит не один десяток или даже не одна сотня работ. А если прое кт вкл ючает в себя тысячи и десятки тысяч работ, то сетевое моделирование просто незаменимо.

Главными элементами сетевой модели являются работы, события и пути. Под работой в системах СПУ понимается протяженный во времени процесс, требующий затрат труда и других ресурсов (понятие работы в СПУ соответствует понятию конкретного действия в линейных графиках). В качестве работы в отдельных случаях могут быть признаны, в частности, ожидание — протяженный во времени процесс, не требующий затрат труда (например, твердение бетона), а также логическая зависимость одной работы от другой, не требующая никаких затрат, в том числе и времени, но обусловленная необходимостью соблюдения очередности наступления событий (такие работы в сетевых моделях называются фиктивными).

Событие — это момент завершения какого-либо процесса (работы или совокупности работ), отражающий конкретный этап выполнения плана (проекта). События в сетевых моделях не имеют продолжительности и совершаются как бы мгновенно. Любое отдельное событие считается совершенным после окончания всех работ, предшествовавших ему. Последующие же работы могут начаться только после данного события. Особый статус в сетевых моделях имеют исходное и завершающее события. Исходное событие не имеет предшествующих работ и событий, а завершающее — последующих работ и событий.

Путь на сетевых моделях представляет собой завершенную последовательность работ, т.е. последовательную совокупность взаимосвязанных работ от исходного события до завершающего. При возможности параллельного выполнения некоторых работ на сетевой модели появляется несколько путей достижения завершающего события.

События в сетевых моделях принято изображать кружками, работы — стрелками (ориентированными дугами), как это представлено на рис. 14.2.

Рис. 14.2. Простейший фрагмент сетевой модели

При построении сетевых моделей нужно руководствоваться следующими правилами:

1) в сетевой модели не должно быть тупиковых событий, за исключением завершающего, т.е. событий, из которых не выходит ни одна работа;

2) в сетевой модели не должно быть хвостовых событий, за исключением исходного, т.е. событий, которым не предшествует хотя бы одна работа;

3) в сетевой модели не должно быть замкнутых контуров и петель, т.е. путей, соединяющих некоторые события с ними же самими;

4) любые два события могут быть связаны не более чем одной работой;

5) в сети должно быть только одно исходное и только одно завершающее события.

Построение сетевого графика

Вернемся к примеру плана конкретных действий, на базе которого составлен линейный график (рис. 14.1) и дополним его некоторыми действиями (теперь их следует называть работами) с тем, чтобы составить сетевую модель этого плана. Данные для построения сетевой модели представлены в табл. 14.1.

Таблица 14.1

Продолжительность выполнения работ

Исходя из того, что общепринятым обозначением работ в сетевых моделях является запись (i,j ), где i — начальное, j — конечное события работы, кодовые представления работ в данном примере будут иметь вид: (0,1), (0,6), (1,2), (1,5), (2,3), (2,4), (3,4), (4,5), (4,7), (5,7), (6,7). Эти обозначения работ плана представлены в первой графе табл. 14.1, во второй графе содержатся наименования работ, в третьей — их продолжительность. В такой форме и нужно представлять на практике все виды работ плана для упорядочения их во времени.

Пусть, как уже указывалось выше, для выполнения данного комплекса работ требуется составить упорядоченный сетевой график. Исходным событием, как следует из перечня работ, является событие 0, поскольку ему не предшествуют никакие работы. Завершающим же — событие 7, поскольку за ним не идет никакая работа. Используя правило построения сетевых графиков, согласно которому изменение времени отражается слева направо, и полагая, что номера событий в примере естественным образом отражают последовательный ход осуществления работ, можно получить вариант сетевого графика, представленный на рис. 14.3. Чтобы легче было ориентироваться в представленной сети работ и событий, работы имеют краткое название (полное их название приведено в табл. 12.1) и каждая работа имеет продолжительность исполнения в днях. Работа (4,5), представленная на сети пунктирной стрелкой, является фиктивной, т.е. она не имеет продолжительности и для нее не требуется никаких других ресурсов. Фиктивная работа (4,5) показывает, что работа (6,7) может быть начата только после того, как завершится работа (2,4).

Важнейшим элементом сетевого графика наряду с событиями и работами является путь, под которым принято понимать любую последовательность работ, когда конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Путь считается полным, если начало его совпадает с исходным событием сети, а конец — с завершающим. Самый продолжительный полный путь сетевого графика называется критическим. Критическими же называются также работы и события, расположенные на этом пути.

Сеть, представленная на рис. 14.3, имеет шесть полных путей. Критический путь на ней выделен жирными стрелками и его продолжительность составляет 49 дней. Быстрее выполнить весь комплекс работ нельзя, так как для достижения завершающего события критический путь надо пройти обязательно.

Поскольку другие пути сети по продолжительности меньше критического, то находящиеся на них события и работы имеют резервы времени, обусловливаемые ранними и поздними сроками начала и окончания работ. Знать эти величины заранее весьма полезно, так как в процессе выполнения плана случайные возмущения внешней среды могут приводить к необходимости маневрирования некоторыми ресурсами. Зная резервы времени работ, находящихся на некритическом пути, можно осуществлять эти маневры, не выходя за пределы планового времени выполнения всего комплекса работ. Некоторые наиболее часто применяемые на практике временные параметры событий и работ сетевых моделей представлены в табл. 14.2.

Таблица 14.2

Временные параметры сетевых моделей

Рассмотрим порядок расчета каждого из представленных в табл. 14.2 временных параметров. Ранний срок совершения i -го события определяется продолжительностью максимального пути, предшествующего этому событию:

tp (i ) = max (L п i ),        (14.1)

где L п i — любой путь, предшествующий i-му событию.

Для события j , если ему предшествует несколько путей, ранний срок совершения можно находить по формуле

Поздний срок совершения г-го события определяется как разность между поздним и ранним сроками его совершения:

где Lci — любой путь, следующий за j-ым событием (путь от /- го до завершающего события сети).

Если событие i имеет несколько последующих путей, то поздний срок совершения события i можно находить по формуле

Резерв времени г-го события определяется как разность между поздним и ранним сроками его совершения:

Таким образом, резерв времени события показывает, на какой допустимый период времени можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения всего комплекса работ. Критические события резервов времени не имеют, так как любая задержка в совершении события, лежащего на критическом пути, вызовет такую же задержку в совершении события всего комплекса работ. Из этого следует, что топологию критического пути можно определить не обязательно посредством перебора всех полных путей сетевого графика, что иногда может оказаться утомительным, а просто посредством выявления всех событий, имеющих нулевые резервы времени.

Что касается работ, то они в отличие от событий, не имеющих продолжительности, могут начаться, а также и окончиться в ранние, поздние или в любые другие промежуточные сроки. Очевидно, что ранний срок начала работы (i,j ) - tPH (i,j ) — совпадает с ранним сроком наступления начального события i :

Тогда ранний срок окончания работы [(i,j ) - tP O (i,j )] можно рассчитать по формуле

  определяется соотношением

а поздний срок начала этой работы [t П H (i,j )] — соотношением

Каждая работа, как и пути, в которые она входит, имеет резервы времени. Резерв времени любого полного пути сетевого графика представляет собой разность между длиной критического пути и длиной данного пути:

Резерв пути показывает, насколько может быть увеличена продолжительность всех работ, лежащих на этом пути. Если затянуть выполнение работ, принадлежащих этому пути, на время, большее, чем R(L), то сеть, хотя внешних изменений и не произойдет, станет уже другой, поскольку критический путь переместится на путь L.

, который показывает, насколько

можно увеличить время выполнения данной работы при условии, что срок выполнения комплекса работ останется неизменным. Полный резерв времени работы (i,j ) определяется по формуле

Полный резерв времени работы равен резерву максимального из путей, проходящего через данную работу. Этим резервом можно располагать при выполнении данной работы, если ее начальное событие совершится в самый ранний срок, можно допустить совершение ее конечного события в самый поздний срок. Полный резерв времени принадлежит не только этой работе, но и всем полным путям, проходящим через нее. Следовательно, использование полного резерва времени только для одной работы приводит к тому, что резервы времени остальных работ, лежащих на максимальном пути, проходящем через нее, будут полностью исчерпаны. Резер вы же времени других работ, лежащих на немаксимальных путях, проходящих через данную работу, сократятся на величину исполь зованного резерва.

Поскольку возможно использование полных резервов време ни работ не во всем их объеме, а только частично, то возникают различные варианты выполнения намеченного плана. Методологией сетевого планирования они предусмотрены в других резер вах времени работ. Так, выделяют частный резерв времени перво го вида, частный резерв времени второго вида и независимый резерв времени. Все они являются частями полного резерва вре мени и позволяют осуществлять более тонкое маневрирование огра ниченными ресурсами в процессе выполнения всего комплекса работ без нарушения времени критического пути. О них можно прочитать в специальной литературе по экономико-математическим методам.